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Abstract

Crystallization of proteins is a nontrivial task, and despite the substantial eVorts in robotic automation, crystallization screening
is still largely based on trial-and-error sampling of a limited subset of suitable reagents and experimental parameters. Funding of
high throughput crystallography pilot projects through the NIH Protein Structure Initiative provides the opportunity to collect crys-
tallization data in a comprehensive and statistically valid form. Data mining and machine learning algorithms thus have the potential
to deliver predictive models for protein crystallization. However, the underlying complex physical reality of crystallization, combined
with a generally ill-deWned and sparsely populated sampling space, and inconsistent scoring and annotation make the development
of predictive models non-trivial. We discuss the conceptual problems, and review strengths and limitations of current approaches
towards crystallization prediction, emphasizing the importance of comprehensive and valid sampling protocols. In view of limited
overlap in techniques and sampling parameters between the publicly funded high throughput crystallography initiatives, exchange of
information and standardization should be encouraged, aiming to eVectively integrate data mining and machine learning eVorts into
a comprehensive predictive framework for protein crystallization. Similar experimental design and knowledge discovery strategies
should be applied to valid analysis and prediction of protein expression, solubilization, and puriWcation, as well as crystal handling
and cryo-protection.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The initial NIH Protein Structure Initiative, PSI-I [1],
underway since fall of 2000, provides signiWcant public
funding to nine P50 Structural Genomics Centres. One
of the main objectives of these centres is the advance-
ment of high throughput crystallography, including
methods for high throughput protein crystallization. As
a result of these eVorts, large amounts of protein crystal-
lization data will become available as the PSI centres are
increasing their production during the last months of
their funding. One would assume that the analysis of
massive amounts of proteomics and crystallization trial
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data engendered by the PSI centres should enable
deployment of statistical methods and machine learning
to develop predictive algorithms for eVective protein
crystallization with conWdence.

There are already some indications emerging that the
process may not be as straightforward as it appears. The
sources for the diYculties lie fundamentally in the com-
plex physico-chemical nature of protein crystallization,
resulting in non-trivial experimental design issues,
which again aVect data consistency and data validity,
and thus in turn determine the applicability and signiW-
cance of the data mining algorithms that can be
deployed to tackle the problem. We will thus have to
explore each of these issues in order to evaluate current
and possible future approaches towards crystallization
data analysis.

A compounding practical issue is that still only few
comprehensive reports have emerged on new crystallization
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statistics and predictions from the initiatives—which
already begin to compete for the next round of PSI-II
funding announced in early 2004—and a distinct proba-
bility exists that under pressure to produce novel struc-
tures (which is the ultimate goal of a PSI Centre), the
opportunity to create comprehensive and consistent
crystallization databases across the centres may be lost.
This concern is not entirely unfounded, as both the
omission of negative results and the lack of the most
basic quantity in statistics, the number of trials, have
rendered the publicly available crystallization databases
(Biological Macromolecule Crystallization Database,
BMCD [2]; Protein Data Bank, PDB [3]) virtually
ineVective for the purpose of rigorous statistical analysis
and machine learning, even with signiWcant restructuring
and annotation eVorts [4,5].

In this review, we will discuss the basic challenges
resulting from the complex physico-chemical nature of
protein crystallization and how they aVect all aspects of
experimental design and data generation of crystalliza-
tion experiments. These preliminaries are important, as
experimental design and data validity determine criti-
cally (and without mercy) the selection, signiWcance, and
value of statistical analysis and machine learning
employed to derive predictive frameworks of increasing
complexity and speciWcity. We need to introduce more
and better deWned prior information about speciWc pro-
teins or classes to achieve true predictive models of
value. In the absence of an ultimate and universal crys-
tallization technique, reliance on probabilistic models is
for the foreseeable future our best bet to increase speci-
Wcity, eYciency, and success rates in crystallization
trials.

2. Fundamentals of protein crystallization—the
experimental perspective

2.1. Physico-chemical basics of protein crystallization

From a phenomenological viewpoint, crystallization
is phase separation in a thermodynamically metastable
supersaturated system under the control of kinetic
parameters, with the favourable outcome being the for-
mation of a crystal. FulWlment of thermodynamic crite-
ria only implies that crystallization is possible, i.e., it is a
necessary but not suYcient condition for crystallization.
Whether the thermodynamically possible outcome is
realized depends on the kinetic parameters controlling
the process. While the thermodynamic parameters (clas-
siWable into extensive ones like protein or reagent con-
centrations, and intensive ones such as temperature or
pH) are easily controlled by the experimenter, we have
only limited inXuence on (and knowledge about) the
kinetic parameters such as equilibration rates, molecular
association, preassembly, nucleation [6], and growth
kinetics. These kinetic parameters are pathway depen-
dent and do change, for example, with crystallization
method, and vary even with less obvious factors such as
drop size [7]. The fact that kinetic parameters determine
the actual outcome of a thermodynamically possible
scenario also limits the usefulness of otherwise viable
diagnostic tools such as static or dynamic light scatter-
ing as indicators for success in predictive modelling, as
they are based on thermodynamic excess properties (dis-
cussed in [8]).

From a microscopic perspective, crystals are periodic
assemblies of macromolecules with few and relatively
weak contacts between molecules [9]. Detailed packing
analysis of crystal structures revealed that protein–pro-
tein crystal contact formation appears to be an essen-
tially stochastic process [10]. Moreover, because current
protein structure prediction is not accurate enough nor
can protein–solvent interactions be modelled with the
necessary precision to pinpoint all contributions to the
free energy of crystallization (not to speak of the afore-
mentioned kinetic implications), ab initio crystallization
prediction for proteins is not feasible. Notwithstanding
the progress in designing molecular assemblies by engi-
neering of packing contacts between known structural
templates [11], the absence of ab initio calculations from
sequence and physical principles does require statistical
approaches to quantify the likelihood of a certain pro-
tein to crystallize under given conditions.

2.2. The experimental setup

In contrast to what one would expect considering the
fundamental complexity of the crystallization process
described above, the actual setup of the common crystal-
lization experiment is deceptively simple: A weakly
buVered protein solution is combined in ratios of order
1:1 with a crystallization cocktail, placed in a more or
less closed system, and left alone while approaching
equilibrium to the point where kinetics permit. The
major variables here are the protein solution, the chemical
screening conditions, the crystallization method, and the
scores used to quantify the experimental outcome. Each
group provides sources of uncertainty and diYculty for
the experimental design.

Rule 1: Crystallization experiments are not as trivial as they
may appear from the fact that basic tasks involve little more
than pipetting solutions together and closing the system.

2.2.1. Protein
Varying degrees of information are available for the

proteins to be crystallized, and often even what is known
is not or inconsistently recorded in the crystallization
databases. Protein preparations contain various reagents
and additives such as lipids, detergents, or cofactors
acquired throughout the course of puriWcation, often
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only discovered once the structure is determined [12–
14]. Each of these components may play a critical role in
the crystallization process.2 For the success of classiWca-
tion methods, availability and quality of protein-related
information is crucial. In fact, statistical analysis of
cloning, protein expression, solubilization, and puriWca-
tion shares many similarities with protein crystalliza-
tion data mining in terms of coping with ill-deWned,
poorly sampled, multivariate, and clustered sample
space (Section 4). The vast majority of the experimental
design problems we face when developing predictive
models for protein crystallization (discussed in the gen-
eral statistical analysis Sections 4 and 5) will hamper
data mining of protein production data in a similar
manner. Given the increasing importance of exploring
multiple constructs, either from orthologs [15] or via
protein engineering [16–18], to obtain ‘inherently crys-
tallizable' proteins [19], the need for comprehensive and
valid databases for protein production can barely be
overemphasized.

Rule 2: Thou shalt record all thy cloning, expression, solubiliza-
tion, and puriWcation details in consistent, data mineable format.

Furthermore, we need to recognize that our protein
sample sets are inherently clustered. HTPX eVorts
largely aim for small procaryotically expressed, secreted,
and highly soluble proteins (a.k.a. low hanging fruit) to
meet throughput goals. Such proteins will likely have a
diVerent success space and higher success rate expecta-
tions than large complex assemblies or membrane pro-
teins [20,21], or eukaryotically expressed proteins, in
particular in the presence of conformationally heteroge-
neous posttranslational modiWcations and decorations.
Remarkable diVerences in success rates, even for pro-
karyotic organisms from which the protein samples were
derived, have already been reported [22].

2.2.2. Chemical parameter basis set
Given the practically unlimited number of combina-

tions of chemical components in crystallization recipes,
it comes as no surprise that crystallization conditions
were empirically chosen on the basis of what had worked
before and what was available on the reagent shelf.
Screening kits based on previous success analysis have
been quite successful [23], and abundant variations of
this Wrst kits are now available (although, as noted
before [24], the rationale for their design is sometimes
less than crystal clear). Most crystallization screen
designs pre-classify reagents into one or more groups
such as precipitant, additive, buVer, detergent, etc. [23,25],
and contain combinations of one (or none) reagent out
of each of these classes. In a statistical sense, repeated
use of such premixed ‘sparse matrix' solutions amounts

2 More succinctly phrased, ‘Proteins in solution are sticky, dirty
creatures that pick up no end of detritus from their environment' [29].
to oversampling of certain spots in the multidimensional
crystallization space. Reported success rates thus are
limited to few speciWc combinations of a pre-selected
basis set of reagents. Nonetheless, these screens are suc-
cessfully used even in high throughput eVorts [15] and
allow straightforward basic success rate analysis [22,26].

While relative virtues of chemicals comprising a basis
set can be readily analysed (Section 6), method-deter-
mined variables such as drop size and protein concentra-
tion can be as inXuential and valuable [27] parameters as
the reagents used, the systematic investigation of non-
chemical parameters spanning the crystallization space
has received less attention [28]. Regardless of what crys-
tallization design is used, non-overlap in crucial parame-
ters, be it reagents or technical parameters, does make
unbiased comparison of results between diVerent
research groups (or designs) rather diYcult.

Rule 3: Be aware that there are probably more parameters in a
crystallization experiment which you cannot control than the
ones you can.

2.2.3. Crystallization setup techniques
Numerous crystallization techniques have been devel-

oped, each with diVerent merits and drawbacks depend-
ing on the speciWc purpose (initial screening,
optimization, and harvesting) and type of research envi-
ronment [8]. Fig. 1 provides a quick overview of a few
popular methods and some of their (dis)advantages.
Many more special techniques are described in [29].

Maximizing comprehensive sampling of crystalliza-
tion space with the least amount of material plus ease of
miniaturization favours robotic high throughput setup
of nano-drops [30,31]. In addition, absence of sealing
requirements makes micro batch methods under oil [32–
35], and free interface diVusion micro-crystallization in
multi-layer soft lithography chips [36,37] attractive.
Excluding proteins which are unlikely to crystallize from
expensive expression and puriWcation scale-up via
micro-crystallization techniques used in combination
with integrated micro-puriWcation [38] could provide a
signiWcant eYciency gain—despite possible loss of some
proteins due to non-transferability to a diVerent optimi-
zation and harvesting technique (Fig. 2).

Optimization is generally pursued after the major
parameters (or factors, compare experimental design
Section 4) have been determined during screening. We
estimate that about 10–20% of prokaryotic proteins may
diVract well out of initial screens. This metric is seldom
reported, but astonishing values up to 86% have been
observed [41] in nanodrop vapour diVusion setups. A
systematic study indicated higher success rates of micro-
batch screening in direct comparison with vapour diVu-
sion experiments [40]. From a process eYciency viewpoint,
the use of the same equipment throughout the process
can favour deployment of a single technique for
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Fig. 1. Schematics of popular crystallization techniques. Hanging drop vapour diVusion (HDVD) is the most popular method in manual setups, and
sitting drop vapour diVusion (SDVD) is commonly used with robotic nanodrop setups. Absence of additional sealing requirements and ease of min-
iaturization favours automated microbatch screening under oil, although harvesting tends to be more diYcult. Microdialysis is diYcult to automate
or to miniaturize. Miniaturized free interface diVusion screening chips are gaining popularity, but automation and harvesting issues remain to be
resolved. Each method traverses the crystallization phase diagram in a diVerent path and the same chemical screening conditions do not necessarily
produce the same results.

Fig. 2. Venn diagrams representing crystallization scenarios, reproduced with permission from [39]. (A) Overlap in success space between three diVer-
ent techniques. Circles have the same diameter, indicating equal overall success rate for each method. Overlap between hanging and sitting drop
vapour diVusion (VD) techniques is presumably large, whereas microbatch may have fewer conditions in common with either [40]. (B) Hypothetical
scenario representing free interface diVusion micro-technique with potentially higher success rate but limited overlap with sitting drop VD technique.
Similar diagrams can be used to visualize the overlap (or lack thereof) of basis sets used in diVerent setups and designs.
screening and optimization [8], enabling consistent
robotic set up of either grid-type or limited random-type
optimization experiments subsequent to screening. Some
not yet conWrmed evidence points towards increased
screening success rates in TOPAZ (Fluidigm) microXui-
dics chips (B.W. Segelke, LLNL, personal communica-
tion). From a chemical standpoint, the distinction
between crystallization screening and optimization of
crystal growth is arbitrary, but a change in method
related parameters can signiWcantly impact overlap and
success rates (Fig. 2).

2.2.4. Scoring of crystallization trials
The majority of crystallization laboratories quantify

their crystallization results by assigning quality scores on
a Q-scale with a granularity of 3–10. For example, 0 may
indicate a clear drop, and 9 a perfectly looking, isotropi-
cally dimensioned crystal. A Q-scale of 1–7 may be used
[28], or only three levels, clear, precipitate, crystalline,
may be assigned [22]. With proper training and cross-
validation, individuals as well as automated image rec-
ognition and scoring routines [42–45] can assign scores
in a relatively consistent way within a given laboratory.
Unfortunately, what the scores really mean varies, and
no strong common scoring metric exist.

The problems arising from inconsistent scoring are
evident. First, in binary models, the cut-oV for success
can be set rather arbitrarily. For example, in our labora-
tory [8] we accept a quality score 15 to indicate success,
which includes anything from small crystal clusters via
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needles to crystals of perfect appearance. Raising or low-
ering the cut-oV score or varying the deWnition clearly
has a dramatic eVect on the reported success rates. This
makes inter-laboratory comparison of otherwise poten-
tially interesting statistics such as relative success rates
for proteins from diVerent organisms [22] diYcult. Sec-
ond, shape and habit of a crystal can be deceiving. Salt
crystals can be scored, and well-developed crystals may
show poor diVraction while a cluster of 7's might be dis-
sected to yield a well-diVracting microcrystal fragment.
One might then argue that diVraction limit would be the
true success score of a crystallization experiment, a point
made by ‘high-output' proponents [46].

Using diVraction limit as a qualiWer for crystallization
success, however, carries its own limitations. There are
multiple handling steps involved subsequent to observa-
tion of a crystal. Harvesting, cryo-protection, mounting
and annealing, radiation damage, etc., are all known to
aVect diVraction quality [47]. These parameters are intro-
duced after the crystallization process—and, provided
they are screened in a suitable experimental design, do
contribute to additional mineable data for the total pro-
cess (compare Fig. 3), using a combined success indicator
‘diVraction quality.' Just as properties of each protein
construct and the parameters of protein production
inXuence the outcome of the crystallization experiment
and thus need to be recorded for data mining purposes
(Rule 2), the post-crystallization handling can provide
equally important insights informing about the overall
process.

Rule 4: Thou shalt record diVraction limit and all thy harvest-
ing, cryo-protection, mounting, and handling details in consis-
tent, data mineable format for each crystal.

3. Data structure, data mining, and experimental design—
overview

To successfully data mine our crystallization data in
order to discover knowledge using various statistical
learning techniques for descriptive and predictive pur-
poses, we need to be aware of the quality and the struc-
ture of the data, and make an informed decision which
statistical learning technique is appropriate given the
kind of information we want to recover [48,49]. Just
turning loose some machine learning algorithm on
messy crystallization data and expecting to obtain
meaningful patterns is wishful thinking. In simple
words, what data do we have and what can we do with
them?

3.1. The data repository

Following our rules, we have now amassed an enor-
mous amount of data. They have diVerent nature, and
play a role and are important in diVerent aspects of the
analysis. Unfortunately, at this point it may already be
decided whether our database is rich with hidden infor-
mation, ready to be data mined for intelligent decision
making support, or whether our crystallization data are
presented in a disastrous agglomeration of heteroge-
neous sources, predestining us as the object of jocose sar-
casm by the invigilators of due statistical process.
Distributed eVorts or consortia are particularly sub-
jected to greatly diVering and heterogeneous data reposi-
tory objects. From the authors' painful experience, the
worst legacy types are perhaps spreadsheets scattered
across undocumented network Wle systems.

A good relational database management system will
form the core of the data repository, and adequately
reXect both the data structure and the process Xow [48],
and the database design will anticipate the kind of anal-
ysis and data mining to be performed [42]. The data
repository should also support access to existing dat-
abases allowing retrieval of supporting information

Fig. 3. Path through a hypothetical three-step process tree in a protein
crystallization laboratory. In each step invariant parameters from the
input can be used for classiWcation of the outcomes of the associated
screen. Despite substantial attrition, the amount of data multiplies
dangerously [50] with each screening step. The complete set of infor-
mation from gene to data can be contained as a single instance in case
based reasoning techniques [42,48].
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that can be used at various levels in the decision making
process.

The fundamental physical principles of crystallization
and the description of experimental procedures already
hint at the major problems we face with our data struc-
ture. Our data are incomplete, noisy, and of high dimen-
sionality. While to a certain extent data reduction,
cleanup, and normalization (particularly for distance
measure and propensity based methods) must be con-
ducted a posteriori, early consideration of suitable
experimental design does improve (but not eliminate)
most of the source data problems mentioned above. As
regards statistical analysis, we can distinguish two basic
types of data that we collect. The Wrst major data class
are the screening experiment variables and results
which we populate our database with. Properties of the
material to be screened, on the other hand, remain
invariant through each run of an experimental screen
and form the basis for classiWcation based on certain
properties.

3.2. Screening data and experimental design

When screening a protein for crystallization, we vary
the reagents and their concentration in each drop (a
treatment) of the experimental run, and record the out-
come for each treatment. The experiment could be any
type of screening experiment, and with many levels of
successively branched screening steps, we follow a deci-
sion tree for our process that, despite considerable attri-
tion, creates an enormous amount of data (Fig. 3) that
rapidly can outstrip our capability to analyse them [50].
However, we can avoid production of unnecessary or
useless data through reduction of dimensionality by cor-
relation, principal component analysis, or regression
methods, and reduction of numerosity by clustering or
parametric models [49]. To accomplish this eVectively,
we need to choose a suitable experimental design that is
eYcient and populates the experimental parameter space
with suYciently complete and valid data for the planned
analysis. To appreciate proper design of experiments
(DoE), it will be helpful to examine crystallization as a
statistical sampling problem.

Rule 5: Bad experimental design resulting in poor data cannot
be overcome by whatever degree of posterior sophistication in
the analysis. Data quality ultimately—and without mercy—
determines the validity of any analysis and the resulting infer-
ences.

3.3. ClassiWcation and clustering

Known properties of the material to be screened
remain invariant through each run of an experimental
screen and form the basis for classiWcation based on cer-
tain (class or cluster) properties. For example, the pro-
tein has a certain sequence, from which we can derive
information such as pI, monomer MW, or presence of an
N-terminal His-tag. The protein can have a known
biological function, leading to functional classiWcation,
or the protein may belong to a certain fold family [51].
Each such cluster may map to a diVerent region in crys-
tallization success space, and using this prior informa-
tion, one can design a more successful crystallization
screen than by following just global crystallization
success distributions derived for all proteins. This is, for
example, the rationale for all classiWcation or clustering
eVorts of the BMCD [4,5,52,53].

The distinction between classiWcation methods and
clustering methods is that in the Wrst case we assign a
speciWc class label to each member of the training set
and derive a classiWcation rule. A new member of the
test set then can be classiWed (predicted) as belonging to
a class with a certain probability, based on the ‘learned'
classiWcation rules. As we deWne or provide the class
label, this type of learning is supervised. In contrast, we
may neither know how many clusters the data contain
nor what their class label is. The objective of unsuper-
vised learning is then, based on object attributes, to
group objects so that they share similarities within each
cluster, but are dissimilar (distant) to the objects in
other clusters. This grouping is called clustering, and the
similarity within clusters allows us to treat its objects as
one group. Fig. 4 illustrates simple global mapping to
hot spots in crystallization space, and Fig. 5 the map-
ping of a clustered protein sample. Unsupervised learn-
ing thus discovers additional or novel clusters, and
selecting and tuning the proper classiWcation and pre-
diction algorithm is not trivial [49]. Some of our protein
classiWers, function for example, may in fact themselves
be derived by clustering or combined unsupervised
learning techniques [54,55].

Fig. 4. Global mapping of protein space to crystallization space. The
crystallization space has been explored, and two ‘hot spots' identiWed,
but no explicit classiWcation of proteins has been attempted. Such
could represent results from simple crystallization propensity analysis,
and the selected hot spot could be a cluster of PEG-MMEs at about
neutral pH.



396 B. Rupp, J. Wang / Methods 34 (2004) 390–407
Commonly used classiWcation techniques are decision
tree induction, Bayesian classiWcation and belief net-
works, artiWcial neural networks, genetic algorithms, or
case based reasoning (some of which are discussed in
Section 6 when used for crystallization prediction). Oth-
ers, like k-nearest neighbour methods, fall prey to the
curse of dimensionality, and regression models are
brieXy discussed in the section on optimization. A full
discussion of the concepts and techniques of data mining
and machine learning is outside the scope of this review,
and we recommend the excellent introduction by Han
and Kamber [48].

Fig. 5. Mapping of protein clusters to diVerent hot spots in crystalliza-
tion space. The centroid of each cluster is given by the small full circles.
Cluster 3 is clearly distinct from 1 and 2, and also maps to a diVerent
region in success space. Clusters 1 and 2 appear less distinct and the
fact that they map to the same region in success space indicates that
interclass distances may not be suYcient to justify separate treatment.
4. Crystallization screening as a sampling problem

Let us conceptualize the crystallization data space as
an n-dimensional vortex or cuboid, whose basis (axes) are
extensive parameters like chemical components, protein
concentration, and intensive ones like temperature, pH,
protein properties, or various setup parameters. Crystalli-
zation success analysis can then be treated as a sampling
problem of an unknown distribution of successes in crys-
tallization (parameter) space (Fig. 6). Although this pic-
ture is simple to understand, the high dimensionality
leading to sparse distribution of data points and the vary-
ing degrees of freedom (parameters) that can be investi-
gated require careful attention to experimental design.

4.1. Sampling in high dimensional space

Assume a sampling space of dimensionality n. An
exhaustive screening experiment can be conducted that
varies each dimension n in k steps or levels. The number
of experiments to be set up is then kn. Using only 10
reagents which we systematically vary in three concen-
tration levels (none, low, and high), we need to set up
59,049 experiments. Even using small drops containing
only 200 nl of protein solution, we would consume about
12 ml of pure protein preparation, which in all likelihood
will meet terminal resistance from our colleagues prepar-
ing the material.

4.1.1. Grid screens
Systematic exploration of parameters is feasible only

in low dimensions and with low granularity, and a
Fig. 6. Schematic of simple 3-d (3 factor) crystallization space showing varying coverage by diVerent sampling protocols using 12 trials each. The
large cube represents fourfold oversampling in a sparse matrix-type experiment. Grid screening is not normally used to comprehensively screen for
conditions, but deployed with a rationale to explore systematic variations of two dimensions considered major factors while keeping other parame-
ters constant [25]. Optimization with successively Wner grids also follows this thought [56]. Representation and grouping of data in n-dimensional
data cubes is common practice in multidimensional data mining [48].
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typical exhaustive experiment of dimensionality two
(varying pH and PEG in four steps) needs only 16 exper-
iments. If the parameters selected (either by intuition or
prior knowledge) are indeed dominating factors for crys-
tallization, such designs can rapidly yield valuable infor-
mation. Initially introduced in a 6 £ 4 format, these
designs are known as grid screen experiments [25] and
commercial kits are available. Without experimenter
bias towards established factors, however, repeated 2-d
grid screening and its 1-d variant footprint screening [57]
become rapidly ineYcient. Given that there are about
400 reagents listed in the BMCD [2,29], a method to
eVectively distinguish signiWcant factors from nuisance
factors that do not contribute to successful outcomes is
needed.

4.2. Factorial designs

In view of the impracticality of exhaustive sampling,
the need for a rigorous approach towards eYcient crys-
tallization screening designs was recognized early by
Carter and Carter [60], who suggested factorial experi-
mental designs, which allow application of regression
and variance analysis, as well as response surface meth-
ods for optimization [28]. Factorial designs attempt to
balance the occurrence of probable factors (reagents,
pH, and drop size, etc.) and of their combinations during
the sampling process. We limit the discussion of designs
to the minimum necessary to appreciate its importance
for crystallization screening, and refer to Carter [28] and
the very readable classical introduction into design of
experiments by Box et al. [58].

4.2.1. Full factorial designs
A full factorial design is feasible with a limited num-

ber of factors and levels of their occurrence. For a two-
level (absence and presence), 4-factor (pH, three
reagents) full factorial design, 16 experiments are
required (24 with replication), and we recognize our
4 £ 4 grid screen experiment (PEG and pH) from the
previous section as a complete four-level, 2-factor facto-
rial design. Although a lower number of levels permits to
increase the number of factors investigated with the
same number of experiments, a complete design becomes
rapidly prohibitive. The beneWt of the complete factorial
is, that similar to a covariance matrix in least squares
optimization, it provides a complete picture about all
possible interactions between factors [59].

4.2.2. Incomplete factorial design
As the curse of dimensionality limits implementation

of full factorial designs, one can reduce the number of
experiments by enabling only analysis of Wrst order fac-
tor interactions and balancing the design (meaning all
factor levels occur with the same frequency) while ran-
domly assigning those factor levels. The resulting design
is an incomplete factorial design [59,60], which can be
analysed by means of stepwise multiple regression anal-
ysis to identify major factors and their contributions
(see optimization section). The key to increasing
eYciency a priori in all designs is to select for all proba-
ble factors, but to eliminate irrelevant nuisance factors
and improbable factor levels (excessive precipitant con-
centrations, denaturing pH, high PEG concentrations
plus high ionic strength [29], etc.) to a priori reduce
dimensionality and volume of the n-dimensional sample
space vortex. The selection of the major factors PEG
and pH for an initial grid screen was thus a well-
informed choice [61].

Optimal implementation of incomplete factorials
requires speciWc cocktails and buVers to be prepared for
each experiment of a run, and unfortunately, when these
systematic statistical designs were Wrst introduced, avail-
ability of robotics was not as widespread as it is becom-
ing now (a major factor contributing to the widespread
popularity of prefabricated kits).

4.2.3. Sparse matrix sampling
An approach to reduce the physical eVort of setting

up experimental designs are ‘sparse matrix' sampling
kits [23]. A basis set of reagents, selected based on prior
knowledge about successes (presumed signiWcant fac-
tors), is classiWed into groups such as precipitant, addi-
tive, and buVer, and a limited number of non-repeating
combinations of one (or none) reagent out of each of
these classes are selected. In a statistical sense, repeated
use of such premixed ‘sparse matrix' solutions amounts
to oversampling of certain spots in the multidimensional
crystallization space. Although success rates thus are
limited to relatively few combinations of a pre-selected
basis set of reagents resulting in incomplete coverage of
the sample space, the original formulations have been
successfully used in high throughput screening [22].

4.3. Stochastic sampling

Segelke [19] has assessed grid screen designs [25], foot-
print designs [57], and sparse matrix designs [23] in terms
of sampling eYciency, i.e., Wnding crystallization condi-
tions with a minimum number of trials. Based on formal
statistical derivation, it was demonstrated that random
(stochastic) sampling is most eYcient, particularly when
success rates are low or the successes are clustered. This
eYciency analysis also allows estimating the number of
trials above which return on investment (time, supplies,
and protein) during further screening diminishes, as indi-
cated by cumulative probabilities ([19], Fig. 4). For the
average soluble protein, based on available frequency
and success rate data, we estimate that 288 (3 £ 96) trials
should suYce to Wnd crystallization conditions with high
probability. Beyond this point, the option of protein
engineering or search for orthologs should be investi-
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gated as viable alternative to wasting resources on con-
tinued screening.

In random sampling, coverage of the crystallization
space is achieved by using each crystallization condition
only once, and robotics are a necessity to practically
implement the CRYSTOOL protocol [19,44,62]. Except
for the selection of the basis set which also contains vari-
ous detergents [63], no assumptions about success rate
distributions or about factors speciWc for a particular
protein are made.3

The omission of prior knowledge or absence of
assumptions may seem as a serious limitation of ran-
dom sampling, but there is good reason not to deviate
prematurely from the assumption of ignorance. As
already indicated in the discussion of sparse matrix sam-
pling, the inclusion of prior knowledge—either con-
sciously during analysis, or, quite insidiously, inherent in
the experimental design—may aVect the outcome of the
estimate of the posterior, in our case crystallization
success probabilities. The formal basis for this reasoning
is given by Bayes' theorem, which will be discussed in
Section 5.

4.4. Analysis of results for optimization

Although optimization can be considered as a case of
crystallization prediction for a speciWc protein once
major factors have been established, optimization analy-
sis is not the subject of this review. Carter [28] provides a
concise treatise of linear regression, variance analysis,
and response surface methods for the analysis of incom-
plete factorials and related designs (factorial factorials,
orthogonal arrays, and Hardin-Sloane). Neural net-
works [31] and partial least squares and principal com-
ponent analysis [64] are also applicable to factorial
design optimization. Other multivariate designs used for
crystallization optimization are central composite and
Box-Behnken design [65] as well as iterative simplex pro-
cedures [66].

5. The goal of predictive modelling—a Bayesian viewpoint
of protein crystallization

The purpose of crystallization data mining is to estab-
lish relationships between the experimental parameters
and the experimental outcome. The relationships allow
deriving rules and predictions for the outcome of a new
experiment based on the level of knowledge we have
gained by prior analysis. For example, at the lowest level
of crystallization data analysis, one seeks to make infer-
ences about global ‘hot spots' in success space by basic

3 Note, however, that the CRYSTOOL protocol allows adaptive
customization of parameter ranges such as pH, reagent concentrations,
and reagent frequencies once clearly established trends emerge.
frequency statistics, resembling the way the initial sparse
matrix set [23] was conceived. At a higher level, one
might attempt to categorize proteins into classes with
distinct properties, for example, derive special screening
kits for membrane proteins [20]. Ultimately, we would
like to predict the outcome of a crystallization experi-
ment for a speciWc protein construct of interest, given all
the information we have available.

In other words, important for the long run are corre-
lations (generalizations) of the success distribution in
crystallization parameter space with known properties
of the protein, i.e., known priors that modify our choice
of hypothesis (prediction) where to Wnd the highest like-
lihood for success given what we know already—a clas-
sical Bayesian strategy. We thus can classify levels of
data analysis according to the level of consideration of
prior knowledge (or ignorance) about the problem.

5.1. Bayesian reasoning and inference

A formal basis for deWning diVerent levels of com-
plexity can be based on Bayes' theorem, which is derived
from the sum and product rules of conditional probabil-
ities [67]. The use and power of Bayesian classiWers and
inference is described in many data mining texts [48,68]
and we will provide an example of Bayesian classiWca-
tion relevant for crystallization. As used in inference and
model testing, Bayes' theorem can be written as

Worded as a crystallization example, formula (1)
states that the posterior probability prob(C|D) of our
hypothesis (conWdence) of crystallization (C) given that
the protein belongs to a certain class (D, heavier than
20 kDa and procaryotic) depends on the probability
prob(D|C) that a sample (protein) of class (D) does in
fact crystallize; the prior probability prob(C) of crystalli-
zation without consideration of (D)—in our case without
considering the protein's class membership; and the
probability prob(D) that the protein is indeed a member
of (D). It should be evident that all the terms implicitly
depend on prior information—none of these terms we
know with absolute certainty.4 Any prior assumption,
made directly or imposed indirectly through a biased
experimental design, will thus aVect our success predic-
tion. The most striking point is that the posterior
prob(C|D) recovers rather slowly from incorrect but plau-
sible priors, whereas a uniform prior (or unreasonable

4 The explicit conditioning of all probabilities on prior information
I is often omitted in machine learning texts to simplify algebraic han-
dling. In case of parameter estimation, we can also renormalize the evi-
dence term, formula (1) then is equivalent to prob(C|D, I) D
prob(D|C, I) £ prob(C|I) which I have used previously [39].
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priors) are more eVectively overcome by the likelihood
function prob(D|C) (i.e., more or better data). The pro-
portionality in (1) also shows that ‘bootstrapping' by
using the resulting posterior probability as a prior
(directly or through premature experimental design
changes) and subsequent reanalysis leads to sharpened
posterior probability distribution functions, i.e., a serious
overestimate of our success rate [67], equivalent to our
knowledge model overWtting the data [48]. Both Wndings
are of signiWcance for our crystallization experiments,
and caution against early assumptions about success
rate distribution in crystallization space, and against a
premature limitation of the basis set used in the experi-
ments based on frequency analysis alone. Comprehen-
siveness thus competes with our desire to reduce
dimensionality by sampling focussed on major factors,
often at Wxed levels (kits) for convenience. Striking this
balance is as much inXuenced by the overall goal of the
project (can one accept losses, or has this particular pro-
tein to be crystallized regardless of cost?), as it is deter-
mined by objective analysis [8]. An interesting
predictive eVort explicitly utilizing a Bayesian inference
model has been described [4], but no recent updates
have been made available (http://www.xtal.pitt.edu/xtal-
grow/).

5.2. Reliability and levels of analysis

The validity of any statistical inference method
greatly depends on valid experimental design and the
consistency of the databases. In general, we have reason-
able control over variable design parameters such as
chemical basis set, and over certain (often Wxed) param-
eters of the experimental technique. We have limited or
very little control, however, over impurities, batch varia-
tion, protein aging, nucleation processes, temperature
eVects, vibrations, and other ‘hidden' parameters. Such
parameters may be signiWcant factors, and implicitly
confound in uncontrolled and irreproducible fashion
with other factors. We also obviously cannot make
inferences about parameters we have not explicitly
probed.

Similar concerns hold for the quality of our prior
knowledge. Poor priors give poor probability distribu-
tions. Priors derived from primary sequence like mono-
mer weight, pI, presence and type of aYnity tag, etc., are
relatively ‘hard' and reliable. Cellular location, protein
interactions, and other prior knowledge that can be rele-
vant for crystallization success may be ‘soft' and the
information itself derived from clustering procedures,
and their probabilities less well deWned and reliable. As
in the case of confounding of factors, uncontrolled
parameters such as impurities, co-puriWed additives or
modiWcations may act as hidden or ‘meta' priors and can
skew the probability distribution of our prior of interest
(Table 1).

We can discern, in increasing complexity, three gen-
eral levels of sophistication in crystallization data analy-
sis. In all cases, both the quality of data and the
reliability of prior information aVect the validity of our
hypothesis (prediction) regarding the experimental out-
come, prob(C|D). This universal dependence is known as
the GIGO principle: Garbage In, Garbage Out.5

5.2.1. Analysis without explicit consideration of priors
In the simplest case, we wish to predict what experi-

ments work best to give a desired result by analysing the
data using no other explicit prior information. The clas-
sical case for such an experiment would be global success
analysis, simply describing which reagents or conditions
work best for all proteins crystallized in a high through-

5 This phrase probably originates from a translation of notes by
Ada Byron taken during a talk in 1840 by Charles Babbage on proper-
ties of his analytical engine [69]. Verbatim she stated: “The Analytical
Engine has no pretensions whatever to originate anything. It can do
whatever we know how to order it to perform. It can follow analysis;
but it has no power of anticipating any analytical relations or truths.”
A quotation to keep in mind when attempting to predict protein crys-
tallization using machine learning algorithms.
Table 1
Data objects and their potential use as classiWcation parameters in crystallization data mining

Data object Examples for invariant 
properties

ClassiWcation examples Less obvious parameters Unknown/hidden/ignored

Gene of interest Sequence, sequence derived
information (pI, MW, amino
acid distribution, etc.)
Function, intrinsic order

Structural families, 
SCOP, Pfam, COGs [78] 
Weight, size, functional
class

Cellular location, complex 
partners

Context

Construct Tags, mutations N-terminal His 
C-terminal His

Surface charges
Hydrophobicity pattern

Low complexity regions
induced by linkers

Protein batch PuriWcation history Purity, solubility 
Monodispersity 
Additives, decorations

Time between preparation
and crystallization
Shipping, storage, freezing

Dirt from columns, copuriWed 
lipid, cofactor, detergent 
Residue modiWcations

Crystallization
screens

Instrument parameters Microbatch 
Sitting drop VD 
MicroXuidics

Mixing sequence for drops
Plate type, surfaces

Kinetics, nucleation 
Vibration

http://www.xtal.pitt.edu/xtalgrow/
http://www.xtal.pitt.edu/xtalgrow/
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put crystallization facility. As the use of the term
‘explicit' prior already indicates, even in this conceptu-
ally simple case, experimental design bias (oversampling
of limited and sparsely populated parameter space) can
compromise the data. Even in random sampling, the
selection of the basis set imposes prior assumption on
the data—although to a much lesser degree than over-
sampling with Wxed kits. The selection of protein clusters
(for example, highly soluble, small, prokaryotic proteins)
introduces a strong implicit use of prior information lim-
iting an extrapolation of general validity of the analysis
for all classes of proteins. Fig. 7 shows an extreme exam-
ple illustrating the hazards of establishing correlations
based on clustered data.

5.2.2. Analysis using explicit prior information
At the next level of analysis, we might want to predict

what experiment works best to give a desired result
including prior information about a speciWc property
derived from global analysis of all proteins crystallized
before. An example is the use of the protein isoelectric
point (pI) as a predictor for crystallization success pro-
vided in Section 6. We are using a property of our pro-
tein to select a proper prior probability distribution
derived from (global) analysis of all proteins. We need to
concern ourselves now in addition to the quality of data
with the validity of prior information and assure that
also our classiWcation prior prob(D) in Eq. (1) is reason-
ably ‘hard' and unbiased.

At the most detailed level, we want to predict which
experiment has the highest likelihood leading to the

Fig. 7. Sampling of diVerent populations of people (proteins). The left
cluster represents the Los Angeles Lakers (rod-shaped proteins), the
right cluster Sumo wrestlers (compact and globular proteins). In the
case of people, strong prior knowledge prevents us from accepting the
hypothesis suggested by the invalid regression, thus: (a) attesting to the
power of Bayesian reasoning and (b) demonstrating the adverse eVects
of neglecting the clustered nature of data. In the example of rod-like
vs. globular proteins, there may be considerable less warning signs that
a correlation of two given parameters is meaningless.
desired result given prior information for a subset or
cluster of proteins. In this case, the prior information
is derived from a much smaller sample set compared to
global priors, and the analysis to establish prob(C|I) is
itself more complex and depends critically on the
quality of the classiWcation or clustering [49]. Techni-
cally we are facing a classiWcation problem in a
poorly sampled space of high dimensionality, with all
the associated diYculties [48,70]. For such reasons,
results from undirected cluster analysis of the BMCD
did not translate directly into useful crystallization
strategies [5].

6. Practical approaches to crystallization data analysis
and predictive modelling

Before we examine practical examples of attempts at
crystallization prediction, we must develop a sense of
how to assess the quality of the predictions made. These
measures are not as straightforward as the basic and
familiar moment-based (normal) distribution statistics
such as means, variation, and p values. Too many pat-
terns, for example, reduce the number of instances in
each class and thus the signiWcance of associations, and
only a pattern that is interesting creates also knowledge.
This is probably easiest demonstrated on hand of inter-
estingness measures for association rules [48]: What is
the support (what percentage of data objects in fact are
covered by the pattern) and how high is the conWdence
(how signiWcant or certain is the association). Given the
complexity of crystallization, we have to weigh carefully
where to set (subjective) cut-oV levels of either descrip-
tors to separate noise from useful associations and
predictions.

6.1. Global success space analysis

Using crystallization data from all proteins pro-
cessed, without any explicit classiWcation, we can ana-
lyse the distribution of successful outcomes. For
sampling designs using Wxed reagent cocktails for each
protein, the analysis is straightforward and delivers
crystallization success rates for speciWc conditions
and for classes of reagents [22,26]. The results lead to
the conclusion that the conditions in the original
spares matrix kit [23] are clustered in success space;
thus, a smaller subset (reduced dimensionality) can
crystallize a signiWcant number of proteins [22]. This
fact has been recognized already by the designers of
the screen (J. Jancarik, personal communication,
1994) in the form of a 18-condition mini-screen, whose
best conditions are within the set of 12 best deWned by
Kimber et al. Redundancy of conditions appears to be
generally high within and between prefabricated
screens [41].
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In experimental designs where the occurrence of each
reagent and combination is neither Wxed in frequency
nor at levels, and where not each protein receives the
same treatment, normalization must occur and cluster-
ing of conditions is more subtle and diYcult to visualize.
Such is the case for random screening, and we use the
normalized statistic of crystallization propensity to quan-
tify the usefulness of a reagent.

6.1.1. Crystallization propensity analysis
Propensity analysis, also called normalized frequency

analysis, is widely known from its use in protein
sequence pattern exploration. Propensity is a measure
that assesses whether the frequency of an attribute is more
abundant in a subset (propensity 11) or less abundant
(propensity 01) compared to the entire set. Crystalliza-
tion propensity (CP) of a reagent is then deWned as the
reagent's rate of success (RS) (occurrence of successful
trials containing this reagent/occurrence in all trials con-
taining this reagent) normalized by the average success
rate (AS) (all successful trials/all trials): CP D RS/AS. As
propensity is normalized by the average success rate, a
propensity of 2 means that the particular reagent is twice
as eVective as the average reagent in producing crystals,
which is easy to understand.

The simplest question that thus can be answered by
propensity analysis in a quantitative way is: which
reagents in our basis set are eYcient crystallizers (i.e,
which have a signiWcantly higher propensity than others)
and which are signiWcantly less eVective? Such knowl-
edge allows us to optimize the basis set by retaining
good crystallizers and to replace weak ones with new
reagents without increasing the dimensionality of the
sampling space (albeit ignoring the possibility of syner-
gistic reagent eVects). We show in Fig. 8 a limited analy-
sis of 230,000 random crystallization trials [19,62] using
a basis set of 55 reagents from the TB structural genom-
ics consortium [38,44]. The protein sampling is implicitly
biased towards small, highly soluble, prokaryotic pro-
teins, from Mycobacterium tuberculosis. Quantile–Quan-
tile plots [71] of our dataset against normally distributed
data (not shown) indicate that individual crystallization
propensities are distributed near normal, and we can
assign standard deviations for each propensity and
quantify whether a reagent is a ‘supercrystallizer' via
conventional p values.
Fig. 8. Crystallization propensity of 55 reagents in random crystallization screening [19], http://www.doe-mbi.ucla.edu/TB/DB/XTAL/llnl/]. Analysis
shows that according to the propensity distribution, PEG-MMEs [72] and PEGs [61] indeed exhibit signiWcantly higher crystallization propensities
(p values at the conWdence levels of 0.05. 0.01, and 0.001 are indicated as *, **, and ***, respectively). Na-malonate [73] shows no signiWcantly
increased crystallization propensity, but as malonate has been introduced late into the basis set, and few experiments and successes are available, this
statement itself has less signiWcance as asserted by the large standard error bar. The much larger number of experiments and proper normalization
now also has conWrmed that Am-sulfate, absent in a very limited set analysed earlier for successes [39], shows average crystallization propensity. As a
whole class, the small MW alcohols including MPD rank signiWcantly lower in propensity, in agreement with nanodrop results [26]. The Wnding from
analysis of the BMCD that MPD is the single most successful agent promoting crystallization of biological macromolecules [74] is not supported,
and probably illustrates the eVect of lacking normalization due to absence of negatives in the BMCD (from which the information was derived). It is
likely that MPD was just used more often, consistent with its popularity as it acts simultaneously as a cryoprotectant. The need for a suYciently large
and properly normalized sample set to make rare events become signiWcant does not bode well for the proliferation of ‘crystallization tips' which
practically never undergo statistical validation.

http://www.doe-mbi.ucla.edu/TB/DB/XTAL/llnl/
http://www.xtal.pitt.edu/xtalgrow/
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The analysis of random screening data [19,44] agrees
well with the conclusions from other high throughput
eVorts [15,22,26,41], and conWrms the long-known
empirical evidence [61] that PEGs as a class, and in par-
ticular PEG-MME's [72] around physiological pH (see
also Section 6.2) exhibit a signiWcantly higher crystalliza-
tion propensity. Although we still do not have enough
data to comment with conWdence on the propensity of
malonate, the high propensity for tartrate and citrate
[15] supports the rationale for introducing malonate as a
new salt [73].

Propensity scores can also be used to provide quanti-
tative information about the readiness of a protein to
crystallize (Fig. 9). Following the normalization proce-
dure described above, we estimate that about 30% of
average proteins crystallize with higher than average
propensity. This assumption mirrors the overall
successes reported from all the structural genomics cen-
tres (http://targetdb.org), with 37% of all puriWed pro-
teins yielding crystals. For prokaryotic proteins,
individually reported crystallization success rates vary
between 37 and 69% [22] on a scale of clear, precipitate,
and crystalline, and up to 86% in T. maritima [41] on a
not further speciWed scale of ‘none,' ‘not suitable for
mounting,' and ‘harvestable.' The score of ‘harvestable'
here yields only 23% success rate (approximately 7–8 on
a scale of 10), and how many actually diVracted right out
of the screening is unknown, perhaps around 10–20%.
The absence of a common reporting metric from the cen-
tres seriously obscures such estimates. Judging again
from the target database, on average only another 39%
of those crystallized (only 15% of puriWed proteins) actu-
ally yielded a structure.

Other interesting questions which could be addressed
using full random data sets are:

Are there any combinations of reagents (or general
factor combinations) that cluster and are signiWcantly
more eVective than others? Such speciWc ‘hot spots' of
course can be sampled with correspondingly higher
frequency, and redundant conditions can be replaced
with one representative from each cluster and condi-
tions with poor overall propensity (dead spots) could
be excluded. Compared to single reagent propensity
analysis, they also reveal synergistic eVects (factor
interactions) between reagents. Given enough data,
those synergistic eVects may turn out be diVerent for
speciWc classes or clusters of proteins.
Do extreme reagent concentrations (factor levels)
exist that yield much less or no successes? The volume
of the sample space then can be reduced by trunca-
tion.
Are there reagents which crystallize the same proteins
equally well (i.e., are linear dependent)? Removal of
one of the reagents then reduces dimensionality or
allows a new factor to be introduced to the design
without increasing dimensionality. Here again is the
Fig. 9. Crystallization propensity of 91 TB proteins showing at least one success score of 6 or above (http://www.doe-moi.ucla.edu/TB/DB/XTAL/
llnl/). Correcting for the non-crystallizing proteins, roughly 30% of the proteins crystallize better than average (propensity 1 1), which corresponds
to the initial estimates [19] that gave rise to selecting 288 as a reasonable number of experiments, beyond which the return on screening investment
rapidly diminishes [8,19]. About 150 trials on average are needed per successful outcome. The inset shows that the frequent crystallizers also exhibit
higher maximum crystallization scores. The dashed line serves only as a guide to the eye.

http://targetdb.org
http://targetdb.org
http://www.doe-moi.ucla.edu/TB/DB/XTAL/llnl/
http://www.xtal.pitt.edu/xtalgrow/
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need to be able to cluster the random conditions
based on the propensities of a large protein sample
set.

6.1.2. Outlier detection using market basket analysis
Market basket analysis (MBA) detects patterns of

common occurrence of attributes in datasets, and in our
case we can search for patterns of reagents occurring
together in crystallization successes. MBA essentially
answers the question ‘what goes with what' and the
results are presented in the form of clear, readable asso-
ciation rules, whose meaning (conWdence and support) is
obvious [68]. As we cannot examine an empty basket,
MBA can only work on positive results, meaning that
evenly distributed samples are needed as we lack a basis
for normalization. Although this lack of normalization
makes its direct use for discovery of hot spots less reliable
than clustering or propensity analysis, MBA has demon-
strated its value in outlier detection. Applied to raw suc-
cess data, MBA eliminated an error in data annotation
[39], when we discovered that Na-formate and DMSO
formed a binary group in 12% of the cases (support)
with an 86% grouping probability (conWdence), 5.8 times
more likely than random. The result was caused by
improper entry of an optimization experiment as a ran-
dom screen.

6.2. Predictive models using prior information

A practical example for the implementation of what
we termed a ‘global' and reasonably hard prior as an
indicator for crystallization success is the use of the pro-
tein's isoelectric point (pI) as a predictor for increased
crystallization screening eYciency [75]. The pH of crys-
tallization is distributed monomodally around a mean
value of 6.5–7.0, which has been established by analysis
of crystallization data in the PDB [2,29,75] and qualita-
tively conWrmed by random data (Fig. 10).

As the crystallization pH is one of the few consis-
tently reported values in the PDB (regardless of crys-
tallization strategy employed) and the pI can be
calculated from SEQRES records, one can attempt to
correlate the reported crystallization pH with the pro-
tein's pI. From the diVerent shape of the protein pI vs.
crystallization pH distribution [75] one already expects
in agreement with the literature [2,25,53], that no statis-
tically signiWcant simple direct correlation does exist
[41]. However, following the empirical pH distribution
for a given pI range, protein pI can be used as a predic-
tor to select the pH distribution that maximizes crystal-
lization eYciency (http://www-structure.llnl.gov/
cryspred/). The well known empirical crystallization
pH frequency distribution peaking around 7.0–7.5 can
be interpreted as the sum of distributions that favour
crystallization by few units above or below pI, respec-
tively [75].
Let us investigate a prototype predictor from a Bayes-
ian point of view, according to the terms of equation (1).
Our hypothesis is that a protein with a given pI (D) will
crystallize most likely at a certain pH, prob(C|D). The
quality of this hypothesis then depends on three terms:
prob(D|C), the certainty of D conditioned on C, i.e. the
probability of pI values (D) being associated with a
given pH (obtained from experimental distributions).
The term prob(C), the distribution of experimental pH
for all crystals, is dependent on how accurately the pHs
used to establish the distributions were measured. Simi-
larly, prob(D) describing the distribution of pI for all
crystallized proteins, depends on the certainty with
which we know the pI. It is again evident, that all the
right hand terms depend on the quality of the prior
information.

Despite the recognized uncertainty in reported pH,
which is rarely measured in the drops, (and nominal val-
ues in kits are sometimes deviant [22]), the average error
in pH is likely no more than §0.5 pH units, and is
acceptable. Similarly, we accept that the absolute values
of calculated pIs will deviate by about §0.5 pH units
from the true pI of a protein in solution. Together with
necessity for data smoothing and reduction, the conW-
dence limits are compatible with a binning of the teach-
ing set distributions no Wner than one pH unit [75]. The
part we are least certain of is whether the distribution of
the successful crystallization conditions in the PDB is
biased and reXects just higher use of certain pH conditions

Fig. 10. Crystallization propensity of pH established by random sam-
pling [19,44]. The pH of 6.5 is signiWcantly better than average, and pH
4.5 and 8.5 have signiWcantly less crystallization propensity. Selection
of buVers and forbidden combinations (aVecting for example phos-
phate buVers) may lead to under-sampling of extremes of pH, and
wider pH range might be screening advisable. Accumulation of more
and wider random samples would lead to improved estimators for
prototype predictors, which currently may suVer from usage bias in
the PDB pH frequency data [75].

http://www-structure.llnl.gov/cryspred/
http://www-structure.llnl.gov/cryspred/
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(buVers).6 In our case, the weakest link in (1) thus is
prop(D|C), the likelihood function. With more high
throughput screening eVorts tracking also negatives, the
quality of teaching distributions will increase, generally
allowing the implementation of improved Bayesian
eYciency estimators [75].

6.3. Data mining and clustering of the BMCD

There have been numerous attempts to extract
knowledge from the BMCD [2]. There is no doubt that
the BMCD is a valuable resource as far as coarse bias-
ing of reagent basis sets is concerned (evidenced by the
success of sparse matrix screens), but the absence of
negatives, and thus the number of trials for each treat-
ment, prevents proper normalization and is a serious
limitation we have redundantly discussed. Cluster anal-
ysis has been employed [5,53] with mixed results, as the
clusters are either not signiWcant based on a pseudo-F
test, or the rules too general to be of practical value
(i.e., have low interestingness in machine learning
terms).7

Based on an augmenting hierarchical classiWcation of
the proteins in the BMCD, combined with extensive
restructuring, Hennessey et al. [4] have implemented a
Bayesian probability calculator in a Windows environ-
ment. With a classiWcation basis of about 50 proteins, it
would have been interesting to validate the performance
of this prior based predictor, but unfortunately, since
2000 there have not been any updates in the literature no
on the corresponding web site (http://www.xtal.pitt.edu/
xtalgrow/).

6.4. Case based reasoning

A very interesting, large scale knowledge based pro-
ject implementing intelligent decision support for pro-
tein crystallization has been built around case based
reasoning (CBR) as the machine learning component
[42]. CBR has the beneWt that it can operate on complex
symbolic descriptions as training samples, which allows
to treat whole series of processes as cases (compare
Fig. 3) as well as to accommodate prior knowledge [48].
Also in this very interesting case we have not been able
to Wnd a new update in the recent literature.

6 The problem exempliWes the tendency in hypothesis driven science
to neglect negative results. Such may work to establish the point (one
irreproducibly obtained crystal may suYce to determine a biologically
relevant structure), but it cripples discovery based methods by elimi-
nating any conWdence in the number of occurrences, which are the ba-
sis for strong statistical inference.

7 One paper reports the use of ArtiWcial Intelligence [76] to mine the
BMCD, with the single but historically unperplexing conclusion that
after mid-1983 the use of salts went down while the use of PEGs in-
creased.
6.5. Unexplored machine learning methods for
crystallization

Despite the hype surrounding them, artiWcial neural
networks (ANNs) are just a robust tool to approximate
complex real-world problems. On the positive side, ANN
learning is well suited to problems in which the training
data are noisy and complex, and it is one of the most
eVective learning methods currently known [49]. Similar
to decision trees and MBA, ANNs are however not opti-
mal for predominately negative datasets such as crystal-
lization trials. ANNs are also essentially a ‘black box'
system: although we may obtain robust and accurate
prediction, the rules (patterns) buried in the system are
unknown. A further disadvantage is that ANNs are sus-
ceptible to local extrema, which limits the signiWcance of
prediction on an absolute scale [49].

To escape the local minima problem, one could deploy
genetic algorithms (GAs) as bootstrap techniques. GAs
are evolutionary algorithms, a general optimization
method that searches a large space of candidate objects
for one that performs best according to the Wtness func-
tions (selection criteria). GAs generate successor
instances by repeatedly mutating and recombining parts
of the best currently known instances. These oVspring
instances are then evaluated by the Wtness function and a
new population of instances is generated. Although not
guaranteed to Wnd an optimal solution, GAs often suc-
ceed in Wnding an object with high Wtness [49,77]. Based
on their suitability for knowledge discovery in complex
and noisy data, we plan to explore the performance of
ANNs and GAs together for crystallization data mining
of a much more populated random screening database
we expect to be available by late 2005.

7. Conclusions

The fundamental questions that arise are: what have
we learned so far from the millions of crystallization
experiments conducted by the PSI centres, what are the
prospects of knowledge discovery, and where are the
problems we face now, and how they can be overcome in
the future?

We assert that the data mining and machine learning
algorithms available today are in principle powerful and
plentiful enough to extract useful knowledge from pro-
tein crystallization data, thus enabling development of
quite sophisticated predictive models for crystallization.
Given the high dimensionality, sparse population, and
bias inherent in most experimental designs, Bayesian
inference models which take into consideration the
weakness of our prior information are likely to provide
minimally biased estimators for crystallization success.
In addition to clear semantics, an added attractiveness of
naïve Bayesian inference is its robustness to missing

http://www.xtal.pitt.edu/xtalgrow/
http://www.xtal.pitt.edu/xtalgrow/
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data, highly relevant to the analysis of sparse (crystalli-
zation) screening data. We quote that ‘Over and over, in
machine learning people have eventually, after extended
struggle, managed to obtain results using sophisticated
learning schemes, only to discover years later that simple
methods like naïve Bayesian do just as well—or even
better' [68]. Algorithms such as case based reasoning,
which allow use of whole decision tree pathways
through the complex process of structure determination
as elements of training sets, may appear overly ambi-
tious at present. However, like Bayesian inference mod-
els, they incorporate prior knowledge and are eminently
suitable for grand scale data mining on crystallization
databases.

In concord with concerns published recently [50], data
warehousing and curating has not received the respect it
deserves in view of its enormous importance for success-
ful data mining of highly dimensional and complex pro-
teomics data. If crystallization data analysis is to evolve
from basic frequency and propensity analysis to truly
predictive models of speciWc inference, it is mandatory
that common metrics for scores and minimal standards
for experimental design be mandated. It is also disap-
pointing that no eVective, central, and curated repository
for the crystallization data from all PSI-I initiatives
exists, a situation not likely to change as long as the cen-
tres compete with each other for the next round of PSI-
II funding. We recommend that in the RFA for PSI-II
clearly speciWed and much more stringent, mandatory
requirements for data reporting, metrics, and sharing
should be called for.

So far, the crystallization analysis results from the
PSI-I initiatives have largely conWrmed already known
empirical evidence. It is reassuring that minimally biased
designs like random screening [19,62] can actually quan-
tify and reWne these expectations, and are likely to con-
tribute in the near future the much needed cross-
validation of the common, early biased, empirically
driven designs.

SpeciWcally, the long-known empirical evidence [61]
that PEGs as a class (and in particular PEG-MME's)
around physiological pH exhibit a signiWcantly higher
crystallization propensity has been rediscovered by
several groups [22,26] and conWrmed by unbiased ran-
dom experiments. The pH preference has been further
hardened by classiWcation analysis that provides a
rationale for the apparent non-correlation of pI and
crystallization pH [75]. An initial, highly eYcient pri-
mary screen could thus focus around the principal
components PEG and pH, supplemented with random
variation [19] of other basis set components with high
crystallization propensity. The protein sample set itself
however is consistently biased towards small, soluble,
prokaryotically expressed constructs. At least for this
class of proteins, the chemical basis set can be reduced
in dimensionality and a random screening strategy
using initially a small subset of principal components
with highest crystallization propensity, followed by
broader screening if necessary, seems maximally
eYcient.

It will be informing to see what the Wnal accomplish-
ments in terms of improving crystallization eYciency
and the value of predictive models will be at the end of
the PSI-I period in fall of 2005, when data mining on a
grand scale might become possible.

8. Disclaimer

Transferring a quote from the famous Austrian steam
engine designer Karl Gölsdorf (1861–1916) ‘There is no
single place on a steam engine where you can save a ton,
but 1000 places where you can save a kilogram,' we feel
tempted to state: ‘There is perhaps no single place in
protein crystallization (or proteomics) where we can
double success rate, but there are many opportunities
where we can gain a few percent.'

In the end, no matter how sophisticated the statistical
analysis and data mining of crystallization space, any of
the techniques will only provide a basis for increasing
the probability of crystallization success (or in Bayesian
terms, increase our degree of belief in it), but never guar-
antee success for any particular protein.
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